porn一区_国产精品久久久久永久免费观看_久久com_亚洲美女视频一区二区三区_日日天天_在线精品亚洲欧美日韩国产

歡迎您訪問數(shù)學考題練習:如圖,相等兩圓交于A、B兩點,過B任作一直線交!

數(shù)學考題練習:如圖,相等兩圓交于A、B兩點,過B任作一直線交

更新時間:2024-01-12 16:40:16作者:貝語網(wǎng)校

如圖,相等兩圓交于A、B兩點,過B任作一直線交兩圓于M、N,過M、N各引所在圓的切線相交于C,則四邊形AMCN有下面關(guān)系成立

A.有內(nèi)切圓無外接圓

B.有外接圓無內(nèi)切圓

C.既有內(nèi)切圓,也有外接圓

D.以上情況都不對

試題答案

B

試題解析

根據(jù)切線長定理,四邊形有內(nèi)切圓時,四邊形的對邊之和相等.根據(jù)圓的內(nèi)接四邊形的性質(zhì)可以得到,四邊形如果有外接圓,四邊形的對角和應(yīng)為180°.

解答:解:如圖:

因為⊙O1與⊙O2是等圓,所以相交的兩段相等,

則:∠AMN=∠ANM,

∴AM=AN.

連接O1M,O1C,O2N,O2C,

∵CM,CN分別是兩圓的切線,

∴∠O1MC=∠O2NC=90°,

在直角△O1MC和直角△O2NC中,

O1M=O2N,∠MO1C<∠NO2C,

∴MC>NC

∴AM+NC≠AN+MC,

所以四邊形AMCN沒有內(nèi)切圓.

連接AB,則∠CMN=∠MAB,∠CNM=∠NAB,

在△AMN中,∠AMN+∠ANM+∠MAN=180°,

∴∠CMN+∠CNM+∠AMN+∠ANM=180°,

即:∠AMC+∠ANC=180°,

所以四邊形AMCN有外接圓.

故選B.

點評:本題考查的是圓與圓的位置關(guān)系,根據(jù)兩等圓相交得到AM=AN,再由切線的性質(zhì)得到直角三角形,在直角三角形中判斷CM,CN的大小,得到四邊形的對邊的和不等,確定四邊形沒有內(nèi)切圓.根據(jù)弦切角定理和三角形的內(nèi)角和得到四邊形的對角互補,確定四邊形有外接圓.

主站蜘蛛池模板: 久久精品一 | 国产精品视频导航 | 欧美色频 | 亚洲综合视频一区 | 国内久久精品 | 亚洲精品国产setv | 成人午夜在线观看 | 久久精品久久精品国产大片 | 亚洲精品欧美 | 日本在线视频观看 | 中文字幕在线日韩 | 欧美片网站免费 | 亚洲成人免费 | 91久久久久久久久久久久久久久久 | 日韩精品小视频 | 久久亚洲精品中文字幕 | 一区二区日本 | 日本在线一区二区 | 久久久一区二区 | 亚州中文字幕 | 伊人网国产 | 日本一区二区三区四区视频 | 久久久一区二区三区 | 色偷偷噜噜噜亚洲男人 | 视频一区免费观看 | 九九天堂| 欧美视频二区 | aaa级片 | 欧美国产日本精品 | 亚洲精品久久久久 | 国产传媒在线视频 | 精品国产999| 电影91久久久 | 免费观看毛片 | 日本三级做a全过程在线观看 | 国产一区二区三区高清 | 蜜桃视频网站在线观看 | 国产精品久久久久久久久 | 国产精品a久久久久 | 91精品国产综合久久婷婷香蕉 | 亚洲综合色视频在线观看 |