更新時(shí)間:2024-01-12 16:25:53作者:貝語(yǔ)網(wǎng)校
拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,對(duì)稱軸為直線x=1.且A、C兩點(diǎn)的坐標(biāo)分別為A(-1,0),C(0,-3).
(1)求拋物線y=ax2+bx+c的解析式;
(2)在對(duì)稱軸上是否存在一個(gè)點(diǎn)P,使△PAC的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
解:(1)∵A、B兩點(diǎn)關(guān)于x=1對(duì)稱,且A(-1,0),
∴B點(diǎn)坐標(biāo)為(3,0),
根據(jù)題意得:
解得a=1,b=-2,c=-3.
∴拋物線的解析式為y=x2-2x-3;
(2)存在一個(gè)點(diǎn)P,使△PAC的周長(zhǎng)最小.
A點(diǎn)關(guān)于x=1對(duì)稱點(diǎn)B的坐標(biāo)為(3,0),
設(shè)直線BC的解析式為y=kx+b
∴
∴k=1,b=-3,
即BC的解析式為y=x-3.
當(dāng)x=1時(shí),y=-2,
∴P點(diǎn)坐標(biāo)為(1,-2).
(1)根據(jù)對(duì)稱軸和A點(diǎn)的坐標(biāo)求得B點(diǎn)的坐標(biāo),用待定系數(shù)法求函數(shù)的解析式即可;
(2)利用點(diǎn)A和點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,求得線段BC所在直線的解析式后再求出此直線與對(duì)稱軸的交點(diǎn)坐標(biāo)即可.
點(diǎn)評(píng):本題考查了函數(shù)綜合知識(shí),函數(shù)綜合題是初中數(shù)學(xué)中覆蓋面最廣、綜合性最強(qiáng)的題型.近幾年的中考?jí)狠S題多以函數(shù)綜合題的形式出現(xiàn).解決函數(shù)綜合題的過(guò)程就是轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、方程思想的應(yīng)用過(guò)程.