更新時(shí)間:2024-01-12 16:29:17作者:貝語(yǔ)網(wǎng)校
如圖所示,正比例函數(shù)y=kx與反比例函數(shù)的圖象交于點(diǎn)A(-3,2).
(1)試確定上述正比例函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,在第二象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)P(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中-3<m<0,過(guò)點(diǎn)P作直線PB∥x軸,交y軸于點(diǎn)B,過(guò)點(diǎn)A作直線AD∥y軸,交x軸于點(diǎn)D,交直線PB于點(diǎn)C.當(dāng)四邊形OACP的面積為6時(shí),請(qǐng)判斷線段BP與CP的大小關(guān)系,并說(shuō)明理由.
解:(1)把A(-3,2)代入y=kx得:2=-3k,
解得:k=-,
∴y=-x,
代入y=得:m=-6,
∴y=-,
答:正比例函數(shù)與反比例函數(shù)的解析式分別是y=-x,y=-.
(2)∵A(-3,2),
由圖象可知:當(dāng)-3<x<0時(shí),在第二象限內(nèi),反比例函數(shù)的值大于正比例函數(shù)的值.
(3)答:線段BP與CP的大小關(guān)系是BP=CP,
理由是:∵P(m,n)在y=-上,
∴mn=-6,
∵DO=3,AD=2,OB=n,BP=-m,CP=3-PB,DC=n,
四邊形OACP的面積為6,
∴S矩形CDOB-S△ADO-S△OBP=6,
3n-×3×2-×(-mn)=6,
3n-3-×6=6,
3n=12,
解得:n=4,
∴m=-=-,
∴P(-,4),
∴PB=,CP=3-=,
∴BP=CP.
(1)把A的坐標(biāo)代入解析式求出k、m即可;
(2)畫出圖象,根據(jù)圖象,當(dāng)x取相同的數(shù)時(shí)y的值即可求出答案;
(3)求出mn的值,根據(jù)三角形的面積公式得到3n-×3×2-×(-mn)=6,求出m、n的值,求出BP、CP的值即可.
點(diǎn)評(píng):本題主要考查對(duì)用待定系數(shù)法求出正比例函數(shù)、反比例函數(shù)的解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.